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Prior knowledge processing for initial state of Kalman filter
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SUMMARY

The paper deals with a specification of the prior distribution of the initial state for Kalman filter. The

subjective prior knowledge, used in state estimation, can be highly uncertain. In practice, incorporation

of prior knowledge contributes to a good start of the filter. The present paper proposes a methodology

for selection of the initial state distribution, which enables eliciting of prior knowledge from the

available expert information. The proposed methodology is based on the use of the conjugate prior

distribution for models, belonging to the exponential family. The normal state-space model is used

for demonstrating of the methodology. The paper covers processing of the prior knowledge for state

estimation, available in the form of simulated data. Practical experiments demonstrate processing of

prior knowledge from the urban traffic control area, which is the main application of the research.

Copyright c© 2008 John Wiley & Sons, Ltd.

key words: Kalman filtering; prior knowledge; state-space model; initial state distribution
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2 E. SUZDALEVA

1. INTRODUCTION

The paper is devoted to the problem of selection of the initial state distribution for Kalman

filtering. Kalman filter [1] can be well implemented due to good specification of the initial state

and the assumed knowledge of variances of involved noises. The application area of the research

is traffic control, where a lot of expert knowledge is usually available, for instance, precision

of sensors, limited range of involved signals, past measurements of sensors, simulations etc.

Translation of this knowledge into the respective probability density functions (pdf) and choice

of the adequate initial conditions for Kalman filtering is the task, addressed in the paper.

Research in the field of prior knowledge processing is primarily concerned with the input-

output models and directed at Bayesian estimation. The methodology, proposed in [2], used a

complicated procedure of weighting of the prior knowledge pieces. Subsequently, the paper [3]

presented a methodology of incorporation of external knowledge for parameter estimation. One

of its potential applications is quantification of prior knowledge. The proposed approach [3]

indicated a chance, that the underlying concept of fictitious data, used in [2], can be replaced by

the more general, but less elaborated problem formulation as optimization under informational

restriction. The work [4] extended a general idea of [3] and evolved a methodology of translation

of the specific expert knowledge into the prior pdf, used by Bayesian state estimation. However,

the paper [4] considered a special case of the state-space model, restricted by a single output.

The present paper continues a line, oriented at Bayesian state estimation and improves

the methodology, described in [4], getting rid of most inconsistencies and inaccuracies. The

methodology, proposed in the present paper, does not require restricting a dimension of the

state-space model. Moreover, the present paper proposes a technique of processing of one of

the prior knowledge types – simulated data, which brings additional specific problems.
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PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 3

The outline of the paper is as follows. Basic facts about the models used and Bayesian

state estimation are provided in Section 2. The main emphasis of the paper is on Section 3. It

describes a methodology of the prior knowledge elicitation, based on the usage of the conjugate

prior distribution for models, belonging to the exponential family. The proposed methodology

enables to obtain the transformed prior pdf, expressing the initial state, conditional on the

available prior knowledge, provided by experts. Its application to Gaussian state-space model,

described in Subsection 3.1, results in the mean and covariance matrix of the initial state with

the incorporated processed prior knowledge. Section 4 is devoted to the processing of the prior

knowledge, available in the form of past simulated data. It describes the problems, which this

type of prior knowledge can cause, and specifies the methodology of the processing. Section 5

provides the illustrative experiments with the traffic control area simulated data. Remarks in

Section 6 close the paper.

The version of the methodology, proposed in the present paper, assumes the model

parameters and noise covariances to be known. The prior knowledge processing for the joint

parameter-and-state Bayesian estimation, meanwhile, remains the open problem.

2. PRELIMINARIES

The probabilistic description of the system, which state is to be estimated, is provided by a

state-space model in the form of the following pdfs.

2.1. State-space model

The model of observation

f (yt|ut, xt) , (1)
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4 E. SUZDALEVA

relates the system output yt to the system input ut and system state xt at discrete time

moments t ∈ t∗ ≡ {0, . . . , t̊}, where t̊ is the cardinality of the set t∗ and ≡ means equivalence.

The model of state evolution

f (xt|ut, xt−1) , (2)

describes the evolution of the state xt.

The model of control strategy

f
(
ut

∣∣d t−1
)
, (3)

describes, generally randomized, generating of inputs ut, based on d t−1, where d t =

(d0, . . . , d̊t) and dt ≡ (yt, ut).

Proposition 2.1 (Assumptions) It is assumed that neither the output yt nor the state xt

depend on the past data d t−1, and control strategies ignore the unobservable system states. It

means, that it holds

f
(
yt

∣∣ut, d
t−1, xt

)
= f (yt|ut, xt) , (4)

f
(
xt

∣∣ut, d
t−1, xt−1

)
= f (xt|ut, xt−1) , (5)

f
(
ut

∣∣xt, d
t−1

)
= f

(
ut

∣∣d t−1
)
. (6)

The finite-dimensional system state has to be estimated and the system output has to be

predicted. These operations call for application of Bayesian prediction and filtering.

2.2. Prediction and filtering

Bayesian predictor of the output is given by the formula

f
(
yt

∣∣ut, d
t−1

)
=

∫
f (yt|ut, xt) f

(
xt

∣∣ut, d
t−1

)
dxt. (7)

Bayesian filtering, estimating the state xt, includes the following coupled formulas.
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PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 5

Data updating

f
(
xt

∣∣d t
)

=
f (yt|ut, xt) f

(
xt

∣∣ut, d t−1
)

f
(
yt

∣∣ut, d t−1
) , (8)

∝ f (yt|ut, xt) f
(
xt

∣∣ut, d
t−1

)
,

(∝ means proportionality) that incorporates the experience contained in the data d t.

Time updating

f
(
xt+1

∣∣ut+1, d
t
)

=
∫

f (xt+1|ut+1, xt) f
(
xt

∣∣d t
)

dxt, (9)

which fulfills the state prediction.

The filtering does not depend on the control strategy {f(ut|d t−1)}t∈t∗ but on the generated

inputs only.

The application to Gaussian state-space model with Gaussian prior on x0 and Gaussian

observations provides Kalman filter. The prior pdf f(x0), that expresses the subjective prior

knowledge on the initial state x0, starts the recursions. The choice of the mentioned pdf is the

main question of the paper.

3. PRIOR KNOWLEDGE ELICITATION

In traffic control, which is a target application domain of the work, the prior pdf f(x0) reflects

uncertain knowledge about the initial length of a car queue (system state) on the intersection

(traffic system). The length of the queue expresses a state of the transport network most

adequately, but it is not directly observable and has to be estimated. Selection of the pdf,

expressing the initial state, can be based on the prior knowledge about the intersection,

provided by experts. The expert information can include specific traffic characteristics (a

saturated flow of an intersection lane, a turn rate, time of the green light, measurements
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6 E. SUZDALEVA

of the input and output sensors etc). To avoid a narrow specialization of the subject matter,

the paper assumes, that the provided prior knowledge comprise the inputs and outputs of the

system.

Let the prior knowledge, provided by experts, be described by the pdfs fτ∗ ≡ {f(d τ )}τ∈τ∗ ,

where τ∗ is a finite set of time moments. The index τ emphasizes, that the quantities, denoted

by it, are related to the prior (not current) knowledge. The observed values are denoted by

index t.

The distribution of the initial state x0 should be chosen, taking into account the provided

prior knowledge fτ∗ . The methodology, proposed in [3], solves the analogous problem of

incorporating of external knowledge for the case of parameter estimation. Modifying it for

Bayesian state estimation, one can transform the prior (flat) pdf f(x0) into the following one

f(x0|fτ∗) =
f(x0) exp[̊τΩτ∗(x0)]∫

f(x0) exp[̊τΩτ∗(x0)] dx0
, with (10)

Ωτ∗(x0) =
1
τ̊

∑

τ∈τ∗

∫
f(d τ ) ln[Z(d τ |x0)] dd τ , (11)

where Z(d τ |x0) relates to the local state-space model, and Ωτ∗(x0) can be interpreted as the

expectation of the logarithm of the state-space model with respect to the average pdf f̂(d τ ),

representing the pdf fτ∗

f̂(d τ ) =
1
τ̊

∑

τ∈τ∗

f(d τ ). (12)

The relation (10) reflects the incorporation of the knowledge, contained in fτ∗ , into the

distribution of the initial state. Mathematically it presents the extension of the ordinary

Bayes rule [5] for processing the crisp values of data d̃ τ , τ ∈ τ∗. Knowledge of these values

is equivalent to fτ∗ ≡ {f(d τ ) = δ(d τ − d̃ τ ) ≡ Dirac delta on d̃ τ}τ∈τ∗ . Originally such

a definition of the knowledge incorporation has been proposed in [3], where the detailed
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PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 7

explanations can be found.

The forms of the function Ωτ∗(x0) and the model Z(d τ |x0) in (11) depend on the cardinality

of the set τ∗, denoted by τ̊ . Recursively, the model Z(d τ |x0) can be expressed as

Z(d τ |x0) =
∫

f (yτ |xτ , uτ ) f (xτ |uτ , xτ−1) f (xτ−1|uτ−1, xτ−2) . . . (13)

× f (xτ−i|uτ−i, x0) dxτ . . . dxτ−iZ(d τ−1|x0),

where i = τ − 1, τ = 1, . . . , τ̊ . For example, let fτ∗ include only the system input and output

(yτ , uτ ) with index τ = 0, i.e. fτ∗ = f(y0, u0). In such a case, according to (11), the pdf (10)

has a relatively simple form.

f(x0|f(y0, u0)) ∝ f(x0) exp





∫
f(y0, u0) ln[f (y0|u0, x0)︸ ︷︷ ︸

Z(d τ |x0)

] dy0du0

︸ ︷︷ ︸
Ωτ∗ (x0)





. (14)

The function Z(d τ |x0) ≡ Z(d 0|x0) in (14) relates to the local model, corresponding to τ = 0.

Since the only prior knowledge f(y0, u0) is available, only the model of observation (1) should

be used in (14). The situation becomes more complicated, when fτ∗ = f(y0, y1, u0, u1), i. e.

τ = 1. In this case the model is denoted by Z(d τ |x0) ≡ Z(d 1|x0) and requires the following

modified form.

f (y0, y1, u0, u1|x0) = f (y1, u1|y0, u0, x0) f (y0, u0|x0) , (15)

=
∫

f (y1, x1, u1|y0, u0, x0) dx1f (y0, u0|x0) ,

=
∫

f (y1|x1, u1) f (x1|u1, x0) dx1f (y0, u0|x0) ,

=
∫

f (y1|x1, u1) f (x1|u1, x0) dx1 f (y0|u0, x0)︸ ︷︷ ︸
Z(d 0|x0)

,

which is obtained with the help of operation of marginalization, chain rule [5], Proposition

(2.1) and Dirac delta. All the pdfs in (15) are known from models (1-2). After integrating
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8 E. SUZDALEVA

and some algebraic rearrangements the proposed form of Z(d 1|x0) provides the initial state,

conditional only on the prior knowledge f(y0, u0, y1, u1), while the state x1 is being integrated

out. The pdf (10) for the case, when when the prior knowledge includes f(y0, y1, u0, u1), takes

the form

f(x0|f(y0, y1, u0, u1)) ∝ f(x0) exp
[∫

f(y0, y1, u0, u1) ln[Z(d 1|x0)] dy0dy1du0du1

]
.(16)

The function Ωτ∗(x0) has a simple form in the case, when the model (13) belongs to

the exponential family. Gaussian model, which Kalman filter deals with, does belong to the

exponential family. In this case the model (13) can be expressed in the form, proposed in [8]

Z(d τ |x0) = A(x0) exp 〈B(d τ ), C(x0)〉 , (17)

where A(x0) is a non-negative scalar function; B(d τ ) and C(x0) are multivariate functions of

compatible and finite dimensions; the functional 〈·, ·〉 is linear in the first argument. For the

model in the exponential family, the pdf (10) will get the following form [8]

f(x0|fτ∗) ∝ f(x0)A(x0) exp 〈̊τV, C(x0)〉 , (18)

where the array V is

V ≡ 1
τ̊

∑

τ∈τ∗

∫
f(d τ )B(d τ ) dd τ . (19)

As it has been said in Section 2, Kalman filter requires Gaussian prior f(x0), i.e. also belonging

to the exponential family. Therefore, choosing the conjugate Gaussian prior f(x0) in (18), one

can preserve the form of the exponential family for the transformed prior pdf f(x0|fτ∗). The

conjugate prior pdf can be chosen as

f(x0) =
Ā(x0) exp

〈
V̄ , C(x0)

〉
∫
Ā(x0) exp

〈
V̄ , C(x0)

〉
dx0

. (20)
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PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 9

With such a conjugate prior the transformed pdf f (x0|τ∗) in (18) keeps the exponential family

form with recursively calculated array

Vτ = Vτ−1 + B(d τ ), V0 ≡ V̄ + τ̊V, (21)

naturally obtained via multiplication of (17) and (20).

The array V in (21) defines the pdf f (x0|τ∗) in a “general” case of Kalman filter, when

the variances are supposed to be known. The specification of the initial state distribution for

the case with the unknown variances is not considered at the present paper and meanwhile

related to the open problems. It could be expected, that the additional statistics – a degree

of freedom – would be involved in the processing, and the other conjugate prior pdf would be

used.

3.1. Prior knowledge elicitation with normal state-space model

The Gaussian models (1-2), used for demonstrating of the proposed methodology, are given

by

observation model yt = Cxt + Dut + vt, (22)

state evolution model xt+1 = Axt + But+1 + ωt+1, (23)

where xt, yt and ut are the column vectors with dimensions x̊, ẙ and ů respectively; vt is a

measurement (Gaussian) noise with zero mean and covariance Rv; ωt is a process (Gaussian)

noise with zero mean and covariance Rw; A, B, C and D are known matrices of appropriate

dimensions. The task is to incorporate the prior knowledge into the distribution of the initial

state x0 in (22-23).

Examples of application of the proposed methodology to Gaussian models correspond to the

usage of the model Z(d τ |x0) in relations (14), (15) and (13).

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2008; 00:1–10
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10 E. SUZDALEVA

3.1.1. Example 1: available prior knowledge f(y0, u0) In the case, when the only available

prior knowledge is fτ∗ = f(y0, u0), the following sequence of calculations is necessary. As it

was noted in Section 3, the model Z(d τ |x0) should be treated only as the observation model

(1), and respectively (22). It means, that being Gaussian one and according to (14) and (22),

the model is

Z(d τ |x0) = f (y0|u0, x0) ,

= (2π)−
ẙ
2 |Rv|−0.5

︸ ︷︷ ︸
Az0(x0)

exp
{
−1

2
[y0 −Du0 − Cx0]′R−1

v [y0 −Du0 − Cx0]
}

,

= Az0(x0) exp






<B(d 0),C(x0)>︷ ︸︸ ︷

−1
2
tr



ξ′0R
′−1
v ξ0︸ ︷︷ ︸

B(d 0)

[1 x′0]
′[1 x′0]︸ ︷︷ ︸

C(x0)










, (24)

where Az0(x0) corresponds to A(x0) in (17), ξ0 = [d0 − C], d0 = y0 − Du0, tr is a trace

of the matrix. The calculation is proved by the straightforward multiplication of components

inside the exponent in (24) and properties of the inner product.

The conjugate Gaussian prior pdf (20) with the mean (column) vector µ and covariance Rx

is chosen as follows.

f(x0) = (2π)−x̊|Rx|︸ ︷︷ ︸
Ā(x0)

exp
{
−1

2
[x0 − µ]′ R−1

x [x0 − µ]
}

, (25)

= Ā(x0) exp





−1

2
tr



M ′R′−1
x M︸ ︷︷ ︸

V̄

[1 x′0]
′[1 x′0]









, (26)

where M is a matrix of the form [−µ I] with I as the unit matrix of dimension (̊x× x̊). The

values of the mean µ and covariance Rx are provided by experts from the application domain.

In the considered domain they mostly present the physical values, that can be used directly.

With such a conjugate Gaussian prior, the transformed prior pdf f (x0|τ∗) also remains a
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PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 11

Gaussian one and preserves its form with the following array V0, corresponding to (21),

V0 = V̄ + ξ′0R
′−1
v ξ0︸ ︷︷ ︸

B(d 0)

, and (27)

A0(x0) = Az0(x0)Ā(x0), (28)

and being obtained with the help of multiplication of (26) and (24). The proposed array (27)

defines the update of the initial state x0, incorporating the prior knowledge, contained in

f(y0, u0). In order to specify, in fact, the mean and covariance matrix of the initial state, the

array (matrix) V0 has to be partitioned as [V1(0) V ′
2(0); V2(0) V3(0)], where V1(0) and V3(0)

are square matrices. The partition is naturally obtained by the straightforward calculation of

(27). Such a partition of the matrix V0 enables to apply Lemma 3 about the completion of

squares [5] to the quadratic form inside the exponent in the relation, obtained according to

(18).

f(x0|fτ∗) ∝ A0(x0) exp
{
−1

2
tr (V0[1 x′0]

′[1 x′0])
}

. (29)

According to Lemma 3 [5], the completion of squares for x0 in (29) gives the following result.

tr



[1 x′0]




V1(0) V ′

2(0)

V2(0) V3(0)



 [1 x′0]
′



 ,

= tr
(
[x0 + V −1

3(0)V2(0)]′V3(0)[x0 + V −1
3(0)V2(0)]

)
+ tr

(
V1(0) − V ′

2(0)V
−1
3(0)V2(0)

)
, (30)

which gives the following Gaussian distribution for f (x0|τ∗)

covariance matrix P̂0(0) = V −1
3(0), (31)

mean x̂0(0) = −V −1
3(0)V2(0). (32)

3.1.2. Example 2: available prior knowledge f(y0, y1, u0, u1) In the case, when the available

prior knowledge contains fτ∗ = f(y0, y1, u0, u1), the model Z(d τ |x0) is given by the pdf (15).
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12 E. SUZDALEVA

Being a Gaussian one, it takes the following form, according to (22), (23) and (24).

Z(d τ |x0) = f (y0, y1, u0, u1|x0) ,

=
∫

(2π)−
ẙ
2 |Rv|−

1
2 exp

{
−1

2
[y1 −Du1 − Cx1]′R−1

v [y1 −Du1 − Cx1]
}

× (2π)−
x̊
2 |Rω|−

1
2

× exp
{
−1

2
[x1 −Ax0 −Bu1]′R−1

ω [x1 −Ax0 −Bu1]
}

dx1

× Az0(x0) exp
{
−1

2
tr

(
ξ′0R

′−1
v ξ0[1 x′0]

′[1 x′0]
)}

. (33)

In order to integrate (33) over x1, it is necessary to rearrange the quadratic forms inside the

exponents in the integral and fulfill the completion of squares for x1. After that and applying

the matrix inversion lemma [5], two quadratic forms inside the integral are modified as

[y1 −Du1 − Cx1]′R−1
v [y1 −Du1 − Cx1] + [x1 −Ax0 −Bu1]′R−1

ω [x1 −Ax0 −Bu1]

= [x1 − x̂1]′R̂−1
x(1)[x1 − x̂1] + [y1 − ŷ1]′R̂−1

y [y1 − ŷ1], (34)

where

R̂−1
x(1) = R−1

ω + C ′R−1
v C, (35)

x̂1 = R̂x(1)[R−1
ω (Ax0 + Bu1) + C ′R−1

v (y1 −Du1)], (36)

R̂y = Rv + CRωC ′, (37)

ŷ1 = Du1 + C(Ax0 + Bu1). (38)
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PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 13

Substituting quadratic forms (34) into the model (33) and integrating (33), one obtains the

following form of the model Z(d τ |x0).

Z(d τ |x0) = f (y0, y1, u0, u1|x0) , (39)

= Az1(x0) exp
{
−1

2
[y1 − ŷ1]′R̂−1

y [y1 − ŷ1]
}

× exp
{
−1

2
tr

(
ξ′0R

′−1
v ξ0[1 x′0]

′[1 x′0]
)}

,

= Az1(x0) exp





−1

2
tr



(ξ′1(R̂
−1
y )′ξ1︸ ︷︷ ︸

B(d 1)

+B(d 0))C(x0)









,

where

Az1(x0) = (2π)−
ẙ
2 |Rv|−

1
2 |R̂−1

x(1)|
− 1

2 |Rω|−
1
2Az0(x0), (40)

ξ1 = [d1 − CA], (41)

d1 = y1 −Du1 − CBu1. (42)

The conjugate Gaussian prior pdf is already chosen in (25). With such a conjugate prior

and model (39), the pdf f (x0|τ∗) preserves the form of the exponential family (18) with the

following array V1

V1 = V̄ + B(d 0)︸ ︷︷ ︸
V0

+B(d 1), (43)

which is obtained through multiplication of (39) and (26). The scalar function A1(x0) is defined

by the product of Az1(x0) and Ā(x0).

The normal distribution of the initial state x0 is obtained similarly to the previous example

in Subsubsection 3.1.1, i.e. with the help of partition of array V1 = [V1(1) V ′
2(1); V2(1) V3(1)],

where V1(1) and V3(1) are square matrices. The covariance matrix and mean of x0 are calculated
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14 E. SUZDALEVA

as

covariance matrix P̂0(1) = V −1
3(1), (44)

mean x̂0(1) = −V −1
3(1)V2(1). (45)

3.1.3. Recursive prior knowledge processing for normal state-space model When the available

prior knowledge includes the finite set fτ∗ ≡ {f(d τ )}τ∈τ∗ , unrestricted unlikely two previous

examples, the calculating of the initial state distribution should be expressed recursively. The

model Z(d τ |x0) is defined according to (13) and takes the form, depending on cardinality τ̊

of the set fτ∗ .

Z(d τ |x0) = Azτ (x0) exp
{
−1

2
tr

{
(B(d τ ) + B(d τ−1) + . . . + B(d 0))C(x0)

}}
, (46)

where

Azτ (x0) = (2π)−
ẙ
2 |Rv|−

1
2 . . .Az0(x0), (47)

B(d τ ) = ξ′τ (R̃−1
τ )′ξτ , (48)

ξτ = [d τ − C̃τ ], (49)

d τ = yτ − D̃τuτ , (50)

and with R̃τ , C̃τ and D̃τ , resulted during calculating, subject to τ̊ . The formula (10) or, more

precisely, (18) is applied with the conjugate Gaussian prior, chosen in (25). In this way, the form

of the transformed prior Gaussian pdf f (x0|τ∗) is preserved and obtained by multiplication
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PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 15

of (46) and (26). The calculation of f (x0|τ∗) includes

Vτ = V̄ + B(d 0) + . . . + B(d τ−1)︸ ︷︷ ︸
Vτ−1

+B(d τ ), (51)

Vτ =




V1(τ) V ′

2(τ)

V2(τ) V3(τ)



 , (52)

Aτ (x0) = Azτ (x0)Ā(x0). (53)

where V1(τ) and V3(τ) are square matrices. Finally, the initial state distribution is obtained as

covariance matrix P̂0(τ) = V −1
3(τ), (54)

mean x̂0(τ) = −V −1
3(τ)V2(τ). (55)

4. PRIOR KNOWLEDGE IN THE FORM OF SIMULATED DATA

In the traffic control area the prior knowledge can be often available in the form of past

(historical) data, mostly obtained by means of simulation or observed on a similar traffic

system. This section is focused on processing of simulated data. In practice, this type of

knowledge can cause an additional problem of predominance of the prior knowledge over

observed values. It means, that the observed data would not be able much to influence the

final result of the filtering. The problem is not critical, when the observed data are informative,

and the number of simulated ones τ̊ is not too large. In that case the formula (10) and,

respectively, (18), can be applied directly. The predominance of prior knowledge occurs, when

the number of simulated data is large. To avoid it, the prior knowledge must include only the

most representative simulated data {d τ}τ∈τ∗ . The representative data are understood as the

“closest” to the observed data d t. Selection of the representative data from the simulated set

is based on the just-in-time modelling technique [6], which measures the “closeness” of pdfs of
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16 E. SUZDALEVA

the past simulated and real-time observed values. Adapted to the normal state-space model

(22-23), the technique of the representative data selection requires the following calculations.

The real-time system data d t = d 0 start to be observed at the time moment t = 0,

t ∈ t∗ ≡ {0, . . . , t̊}. The experience, contained in the data d 0, is incorporated into the prior

distribution f(x0) of the initial state, defined in (25). The resulted pdf f
(
x0

∣∣d 0
)

is obtained

with the help of the data updating (9), applied to Gaussian prior (25) and Gaussian models (22-

23), i.e. by the data updating of Kalman filter. The updated distribution f
(
x0

∣∣d 0
)

includes

the following mean and covariance matrix.

mean x̂0 = µ + K0(y0 − Cµ−Du0), (56)

covariance matrix P̂0 = Rx −K0CRx, (57)

where

K0 = RxC ′(CRxC ′ + Rv)−1, (58)

is the Kalman gain.

The simulated data {d τ}τ∈τ∗ are considered to be “close” to the observed data d 0, if the

distribution of the initial state x0, updated by the data {d τ}τ∈τ∗ is close to the distribution

f
(
x0

∣∣d 0
)
. Incorporation of the experience, contained in {d τ}τ∈τ∗ , into prior distribution

(25) results in the Kalman filter data updating, evolved similarly to (56), (57) and (58). The

resulted mean and covariance matrix of the state x0, updated by simulated data {d τ}τ∈τ∗ are

as follows.

mean x̂0(τ) = µ + K0(τ)(yτ − Cµ−Duτ ), (59)

covariance matrix P̂0(τ) = Rx −K0(τ)CRx, (60)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2008; 00:1–10

Prepared using acsauth.cls



PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 17

with the Kalman gain

K0(τ) = RxC ′(CRxC ′ + Rv)−1. (61)

The “closeness” of Gaussian distributions, defined by (56-57) and (59-60) can be measured by

the Kullback-Leibler divergence [7], which takes the following form [8]

Dtτ =
1
2

[
ln |P̂0(τ)P̂

−1
0 |− x̊ + tr[P̂0P̂

−1
0(τ)] + (x̂0 − x̂0(τ))′P̂−1

0(τ)(x̂0 − x̂0(τ))
]
, (62)

=
1
2

[
(x̂0 − x̂0(τ))′P̂−1

0(τ)(x̂0 − x̂0(τ))
]
. (63)

The result (63) is obtained according to the elementary properties of the logarithm and the

matrix trace. The condition Dtτ ≤ x̊ is taken as the criterion of “closeness” of distributions

(56-57) and (59-60). It means, that if Dtτ ≤ x̊, the simulated data {d τ}τ∈τ∗ , involved in

(59-60), are “close” to the observed data d 0 and are selected as the most representative data

for the prior knowledge processing. The model Z(d τ |x0) is built just-in-time, fitted to the

selected data {d τ}τ∈τ∗ , and the formula (10) or, respectively, (18), is applied to the reduced

set fτ∗ .

The reducing of the number of the simulated data can be done in the alternative way by

weighting of the prior knowledge quantities. However, the present paper is focused on the

proposed methodology of the representative data selection.

5. EXPERIMENTS

The prior knowledge, used for illustrative experiments, is provided by the traffic microsimulator

AIMSUN [9]. The simulated traffic system represents the intersection with four arms, each

with one input and one output lane. Each lane is equipped by a measuring detector. The

input detectors are placed about 100 meters before the stop line at the input lane of the
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18 E. SUZDALEVA

intersection arm, and the output detectors – behind the stop line at the output lane. The

detectors measure the following quantities: intensity, expressing a number of the cars, passing

through an intersection lane per hour [c/h], and occupancy, reflecting a proportion of a time

period of activating the detector by cars [%]. According to [10], the state-space model (22-23)

is specialized to the traffic control area in the following way.

observation model yt = Ctxt + Dtut + vt, (64)

state evolution model xt+1 = Atxt + Btut+1 + Ft + ωt. (65)

The system output yt in (64) relates to the vector [Yt, Ot]
′, where Yt is the (column)

vector of output intensities, provided by the output detectors of the intersection lanes, i.e.

Yt = [y1;t, . . . , yn;t]′, n = 4 is a number of lanes (identical to the number of arms for the given

system), and Ot = [o1;t, . . . , o4;t]′ is the vector of occupancies of the output detectors. The

state xt expresses the length of the car queue at the intersection lanes in cars [c]. One car is

supposed to have about 6 meters. The queue length is not directly observed and has to be

estimated. The state vector xt relates to
[
ξt, OI

t

]′, where ξt = [ξ1;t, . . . , ξ4;t]′ is a queue length

to be estimated. The input occupancy OI
t = [oI

1;t, . . . , o
I
4;t]′ is added to the state vector in order

to ensure the observability of the model [12]. It means, that the utilization of the occupancy in

the model expresses its proportionality to the length of the queue. In general, the occupancy

in the state vector xt+1 can be also estimated, but the present paper is focused on estimation

of the length of the queue.

The scope of the paper does not allow to describe the specific features of the traffic control

in details, but the physical interpretation of the state (a car queue length) evolution in (65)

can be explained. According to [10, 11, 12], the general idea of the car queue length evolution

lies in the statement, that the queue length at the i-th intersection lane is equal to the previous
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PRIOR KNOWLEDGE PROCESSING FOR INITIAL STATE OF KALMAN FILTER 19

queue plus arrived cars minus departed cars. It can be expressed in the following way.

ξi;t+1 = δi;tξi;t − [δi;tSi + (1− δi;t)Ii;t]ut︸ ︷︷ ︸
departed cars

+ Ii;t,︸︷︷︸
arrived

, i = {1, . . . , n}, (66)

where Si is the known saturated flow of the i-th lane (the maximal number of cars, which

can pass through the lane per hour in the case of the green light); Ii;t is the input intensity;

ut is the time of the green light in seconds [s] with an appropriate dimension; δi;t is a queue

indicator so that δi;t = 1, if the queue exists, and δi;t = 0 otherwise. Its value is naturally

defined from the relations

δi;t = 0, if (ξi;t + Ii;tut) < Si;tut (no queue), (67)

δi;t = 1, if (ξi;t + Ii;tut) ≥ Si;tut (a queue exists). (68)

Such a formulation of the queue length evolution is applied in (64-65). With its help, the time-

varying matrices Ct, Dt, At, Bt and Ft for the considered simulated system are composed

from the specific (supposed to be known) traffic parameters and input intensities as follows

[10, 11, 12].

Ct =





0 α21(1− δ2,t) α31(1− δ3,t) α41(1− δ4,t) 0 0 0 0

α12(1− δ1,t) 0 α32(1− δ3,t) α42(1− δ4,t) 0 0 0 0

α13(1− δ1,t) α23(1− δ2,t) 0 α43(1− δ4,t) 0 0 0 0

α14(1− δ1,t) α24(1− δ2,t) α34(1− δ3,t) 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





,(69)

where αij is the known (constant) parameter of the turn rate, reflecting the ratio of cars going

from the i-th arm to the j-th arm, j *= i, in percent [%]. The provided values of this parameter
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20 E. SUZDALEVA

are α12 = 0.3, α13 = 0.5, α14 = 0.2, α21 = 0.3, α23 = 0.2, α24 = 0.5, α31 = 0.5, α32 =

0.2, α34 = 0.3, α41 = 0.2, α42 = 0.5, α43 = 0.3. The queue indicator δi;t, i = {1, . . . , n = 4} is

defined according (67-68).

Dt =





D1t 0

0 D2t

D3t 0

0 D4t

0 0

0 0

0 0

0 0





, (70)

where

D1t =
m=4∑

k=2

αk1((1− δk,t)Ik,t + δk,tSk), (71)

D2t = α12((1− δ1,t)I1,t + δ1,tS1) +
m=4∑

k=3

αk2((1− δk,t)Ik,t + δk,tSk), (72)

D3t =
m=2∑

k=1

αk3((1− δk,t)Ik,t + δk,tSk) + α43((1− δ4,t)I4,t + δ4,tS4), (73)

D4t =
m=3∑

k=1

αk4((1− δk,t)Ik,t + δk,tSk), (74)

with the following values of the saturated flows in cars: S1 = 37.5, S2 = 34.625, S3 = 37.5,

S4 = 34.625. The provided values of the control system input ut, expressing the time of the

green light in seconds [s], are ut = [0.5 0.4]′.
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For the state evolution model (65) the matrices At, Bt and Ft are as follows.

At =





δ1,t 0 0 0 0 0 0 0

0 δ2,t 0 0 0 0 0 0

0 0 δ3,t 0 0 0 0 0

0 0 0 δ4,t 0 0 0 0

κ1,t 0 0 0 β1,t 0 0 0

0 κ2,t 0 0 0 β2,t 0 0

0 0 κ3,t 0 0 0 β3,t 0

0 0 0 κ4,t 0 0 0 β4,t





, Ft =





I1,t

I2,t

I3,t

I4,t

λ1,t

λ2,t

λ3,t

λ4,t





(75)

where κi,t,βi,t,λi,t are the known parameters, time varying according to the traffic during a

week and a workday.

Bt =





−(δ1,tS1 + (1− δ1,t)I1,t) 0

0 −(δ2,tS2 + (1− δ2,t)I2,t)

−(δ3,tS3 + (1− δ3,t)I3,t) 0

0 −(δ4,tS4 + (1− δ4,t)I4,t)

0 0

0 0

0 0

0 0





. (76)

The noises vt and ωt are defined according to (22-23) with the covariance matrices Rv and

Rw respectively. The covariances are computed as a mean of squares of differences between

the state (or output) value and its conditional mean. The mean is substituted by the samples

of the daily (or for the corresponding time of a day) course of the state (or output), which is

constructed as a spline approximation of several last periodic courses (e.g. courses during the
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workdays of a week). The resulted covariance matrices, used for the experimental part of the

work, are respectively

Rv =





5.7173 −0.0480 −0.5697 −0.7774 −1.5699 0.1818 7.9483 0.6499

−0.0480 6.9066 0.9071 −0.4308 2.9482 0.0505 2.5980 1.3818

−0.5697 0.9071 6.4584 −0.1795 2.7968 0.2606 −1.8104 −0.0864

−0.7774 −0.4308 −0.1795 6.2847 0.7385 0.7319 0.5578 −0.4431

−1.5699 2.9482 2.7968 0.7385 17.4974 −0.5426 −0.7768 −0.4907

0.1818 0.0505 0.2606 0.7319 −0.5426 1.2827 0.0387 0.3265

7.9483 2.5980 −1.8104 0.5578 −0.7768 0.0387 57.3942 1.7242

0.6499 1.3818 −0.0864 −0.4431 −0.4907 0.3265 1.7242 7.4311





,

(77)

and

Rw =





2.8967 −0.3371 −0.1246 −0.0522 −0.0075 0.0125 −0.0082 0.0092

−0.3371 1.9210 0.1181 −0.0133 0.0104 0.0065 −0.0369 0.0019

−0.1246 0.1181 1.8617 −0.1010 0.0029 0.0025 −0.0614 −0.0005

−0.0522 −0.0133 −0.1010 2.2410 −0.0252 −0.0040 0.0091 −0.0126

−0.0075 0.0104 0.0029 −0.0252 0.0208 0.0038 0.0042 0.0015

0.0125 0.0065 0.0025 −0.0040 0.0038 0.0025 0.0042 0.0009

−0.0082 −0.0369 −0.0614 0.0091 0.0042 0.0042 0.1182 0.0008

0.0092 0.0019 −0.0005 −0.0126 0.0015 0.0009 0.0008 0.0010





.

(78)

The simulated traffic system, constructed in the described way, has been used for

experiments. The prior knowledge to be incorporated into the distribution of the initial state

x0 in (64-65) for such the system is available in the form of the past simulated data about
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the traffic, dynamically changed according to the time of a day, with the time period, equal

to ninety seconds. The exploitation of the data (not distributions) supposes Dirac delta to be

used during implementation. The character of the traffic differs during the day, therefore, a

series of experiments with the different prior knowledge (the morning, afternoon and the night

traffic) has been conducted.

The experiments included the following steps. The representative data have been selected

among available simulated ones according to the technique, proposed in Section 4. The selected

prior knowledge has been processed and incorporated into the initial state distribution for

Kalman filter according to the methodology, proposed in Section 3. To compare the results

of the filtering, the Kalman filter (on current simulations) was run two times: with the initial

state, obtained after the proposed prior knowledge processing, and starting with the state,

corresponding to (25). In the case of the estimation, made for the daily course of the traffic,

the usual practice in the traffic control area is to start the Kalman filter about 4 a.m. with the

zero-mean initial state. It is naturally caused by the low night intensities. However, when the

filtering should be done for a certain time of a day, the initial state would be chosen by experts

as the average state values, taken from the past simulations. The paper presents the experiment

with the morning peak-hours traffic, which obtained the most significant results. For this

experiment the initial state distribution without application of the proposed methodology (i.e.

corresponding to (25)) has the mean

µ = [4.6134 3.4377 3.4058 3.2268︸ ︷︷ ︸
[ξ1;0,...,ξ4;0]′

13.8555 3.4226 32.3499 1.8240︸ ︷︷ ︸
[oI

1;0,...,oI
4;0]

′

]′, (79)
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and covariance matrix, chosen by experts

Rx =





2.8967 −0.3371 −0.1246 −0.0522 −0.0075 0.0125 −0.0082 0.0092

−0.3371 1.9210 0.1181 −0.0133 0.0104 0.0065 −0.0369 0.0019

−0.1246 0.1181 1.8617 −0.1010 0.0029 0.0025 −0.0614 −0.0005

−0.0522 −0.0133 −0.1010 2.2410 −0.0252 −0.0040 0.0091 −0.0126

−0.0075 0.0104 0.0029 −0.0252 0.0442 0.0067 0.0018 0.0024

0.0125 0.0065 0.0025 −0.0040 0.0067 0.0071 0.0050 0.0022

−0.0082 −0.0369 −0.0614 0.0091 0.0018 0.0050 0.2220 −0.0000

0.0092 0.0019 −0.0005 −0.0126 0.0024 0.0022 −0.0000 0.0030





.

(80)

The current simulated data for the experiments were identified with the real measurements.

In order to judge about quality of the filtering, the estimation error was defined as the

difference between the estimated and real state values. The errors of estimation with and

without processed prior knowledge have been compared for the first twenty time periods of

filtering.

5.1. Experiment with the morning peak-hours traffic

The past simulated data about the morning peak-hours traffic from 7 till 11 a.m. have been

used as the prior knowledge for this experiment. The available data set contained 300 data,

and 62 representative data have been selected and processed. After application of the proposed

methodology, the initial state obtains the following mean values of initial queue lengths at the

intersection arms (i.e. vector ξ̂0(τ) = [ξ̂1;0(τ), . . . , ξ̂4;0(τ)]′).

x̂0(τ) = [6.7328 6.1853 5.9099 5.1026︸ ︷︷ ︸
[ξ̂1;0(τ),...,ξ̂4;0(τ)]′

[oI
1;0, . . . , o

I
4;0]

′]′, (81)
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where the vector of occupancies [oI
1;0, . . . , o

I
4;0]′ is not a task of estimation and remains the

same as in (79). The covariance matrix of the obtained initial state is as follows.

P̂0(τ) =





0.6334 −0.0787 −0.0244 −0.1122 0.0475 0.0214 −0.0070 0.0058

−0.0787 0.6100 −0.1478 −0.0365 0.0024 0.0339 0.0191 −0.0088

−0.0244 −0.1478 0.5885 −0.0881 −0.0102 0.0191 0.0448 0.0136

−0.1122 −0.0365 −0.0881 0.6362 0.0349 0.0066 0.0186 0.0282

0.0475 0.0024 −0.0102 0.0349 0.5871 −0.0191 0.0035 −0.0108

0.0214 0.0339 0.0191 0.0066 −0.0191 0.1398 −0.0007 0.0178

−0.0070 0.0191 0.0448 0.0186 0.0035 −0.0007 0.7169 0.0048

0.0058 −0.0088 0.0136 0.0282 −0.0108 0.0178 0.0048 0.4468





.

(82)

The Kalman filter has been started with the values (81-82), obtained due to the proposed

methodology, and then with the initial state (79-80). Fig. 1 shows the difference of the results

at the beginning of the filtering at the intersection arm 4 of the considered traffic system

(the estimation results for the rest of the arms are very similar). It can be seen, that the

incorporation of prior knowledge (81-82) influenced the beginning of the estimation by the

initial value, more close to the real one, than in the case with incorporation (79-80).

Table I confirms this influence, demonstrating the error of the estimation, defined as the

difference between the estimated and real values of the state for the first twenty time periods

at all intersection arms. The error of estimation with the prior knowledge, processed according

to the proposed methodology, is 0.8181 cars less than in the case without it for arm 1, about

1.0696 cars less for arm 2, and 0.9898 cars for arm 3. The improving of the estimate for arm

4 is 0.1162 cars. With respect to the initial queue lengths (79) and (81) and a character of
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Figure 1. Start of the filter at arm 4: with the applied methodology (top) and without (bottom)
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Table I. Comparison of the morning estimation results for time periods t ∈ {0, . . . , 20}

Arm Estimation error with applied methodology Without it

1 12.8563 13.6744

2 15.3506 16.4202

3 10.4904 11.4802

4 13.4096 13.5258

the morning traffic (the car queue length starts at 5 − 10 cars at 7 a.m. and is going down

by 11 a.m.), such the improvements are rather promising, and the proposed methodology

gives a good start for estimation. The rest of the estimates for time periods t ∈ {20, . . . , t̊}

remains practically unchanged in comparison to Kalman filter without proposed processing of

the prior knowledge. It is explained by a character of Kalman filter, i.e. updating by current

measurements and their natural predominance over prior knowledge.

The covariance matrix (82) demonstrates a less degree of uncertainty of the initial state

estimates with comparison to (80).

To summarize the experimental part of the work, it can be said, that the processed prior

knowledge has the more influence on the filtering results during really peak hours. It means,

the more length of the car queue, the less error of estimation with applying of the prior

knowledge processing. The experiments with the afternoon peak-hours traffic also give the

optimistic results, but less improved in comparison with the morning ones. Naturally, the

noted dependence is explained by high informativeness of the peak-hours data. The night-

traffic experiment, which has demonstrated unchanged, very slightly improved or even worse

estimation results, confirms this statement. Such the conclusions after testing of the proposed
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methodology generally correspond to the global aim of the work to improve the state estimates

on the peak hours with long queues of cars, awaiting at the intersection.

6. CONCLUSION

The paper proposes a methodology of the prior knowledge processing for the initial state of the

Kalman filter. The proposed methodology enables to obtain the specified Gaussian distribution

of the initial state with the respective mean and covariance matrix. The obtained initial state

distribution with the incorporated processed prior knowledge gives the better start to the

Kalman filter and improves most results of filtering. The examples of calculation of the initial

state distribution are shown.

Various types of prior knowledge bring additional specific problems. The paper is focused on

processing of historical data, available by means of simulation or observed on a similar system.

The technique of the simulated data processing is proposed. Application of the technique is

demonstrated on the traffic system simulated data.

The proposed methodology assumes the system model parameters and noise covariances

to be known. The prior knowledge processing for the joint parameter-and-state Bayesian

estimation can be meanwhile related to the open problems.

ACKNOWLEDGEMENTS

The research was supported by GA ČR grant No. 201/06/P434.
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